ОБРАБОТКА ПОГРЕШНОСТЕЙ.

Если результат измерения определяется как совместное измерение, тогда погрешность результата можно определитть воспользовавшись таблицей:

Функция

Погрешности

- абсолютная погрешность

- относительная погрешность

X+Y+Z

X-Y

X*Y

Xn

± n*Xn-1*x

Sin X

± cos Xx

± ctg Xx

Cos X

± sin Xx

± tg Xx

Tg X

Ctg X

Arctg X

Описанные причины возникновения погрешностей определяются совокупностью большого числа факторов, под влиянием которых складывается суммарная погрешность измерения - см. формулу (1). Их можно объединить в две основные группы.

1. Факторы, постоянные или закономерно изменяющиеся в процессе измерительного эксперимента, например плавные изменения влияющих величин или погрешности применяемых при измерениях образцовых мер. Составляющие суммарной погрешности (1), определяемые действием факторов этой группы, называются систематическими погрешностями измерения. Их отличительная особенность в том, что они остаются постоянными или закономерно изменяются при повторных измерениях одной и той же величины. До тех пор, пока систематические погрешности больше случайных, их зачастую можно вычислить или исключить из результатов измерений надлежащей постановкой опыта.

2. Факторы, проявляющиеся весьма нерегулярно и столь же неожиданно исчезающие или проявляющиеся с интенсивностью, которую трудно предвидеть. К ним относятся, например, перекосы элементов приборов в их направляющих, нерегулярные изменения моментов трения в опорах, малые флюктуации влияющих величин, изменения внимания операторов и др.

Доля, или составляющая, суммарной погрешности измерения (1), определяемая действием факторов этой группы, называется случайной погрешностью измерения. Ее основная особенность в том, что она случайно изменяется при повторных измерениях одной и той же величины.

При создании измерительной аппаратуры и организации процесса измерения в целом интенсивность проявления большинства факторов данной группы удается свести к общему уровню, так что все они влияют более или менее одинаково на формирование случайной погрешности. Однако некоторые из них, например внезапное падение напряжения в сети электропитания, могут проявиться неожиданно сильно, в результате чего погрешность примет размеры, явно выходящие за границы, обусловленные ходом эксперимента в целом. Такие погрешности в составе случайной погрешности называются грубыми. К ним тесно примыкают промахи - погрешности, зависящие от наблюдателя и связанные с неправильным обращением со средствами измерений, неверным отсчетом показаний или ошибками при записи результатов.

Таким образом, мы имеем два типа погрешностей измерения:

В процессе измерения оба вида погрешностей проявляются одновременно, и погрешность измерения можно представить в виде суммы:

(3.1)

где с- случайная, а - систематическая погрешности.

Для получения результатов, минимально отличающихся от истинных значений величин, проводят многократные наблюдения за измеряемой величиной с последующей математической обработкой опытных данных. Поэтому наибольшее значение имеет изучение погрешности как функции номера наблюдения, т. е. времени D(t). Тогда отдельные значения погрешностей можно будет трактовать как набор значений этой функции:

(3.2)

В общем случае погрешность является случайной функцией времени, которая отличается от классических функций математического анализа тем, что нельзя сказать, какое значение она примет в момент времени t. Можно указать лишь вероятности появления ее значений в том или ином интервале.

Предположим, что (ti)=0, т.е. систематические погрешности тем или иным способом исключены из результатов наблюдений, и будем рассматривать только случайные погрешности, средние значения которых равны нулю в каждом сечении. Предположим далее, что случайные погрешности в различных сечениях не зависят друг от друга, т.е. знание случайной погрешности в одном сечении как ординаты одной реализации не дает нам никакой дополнительной информации о значении, принимаемом этой реализацией в любом другом сечении. Тогда случайную погрешность можно рассматривать как случайную величину, а ее значения при каждом из многократных наблюдений одной и той же физической величины - как ее эмпирические проявления, т.е. как результаты независимых наблюдений над ней.

В этих условиях случайная погрешность измерений dc определяется как разность между исправленным результатом Х измерения и истинным значением А измеряемой величины:

(3.3)

причем исправленным будем называть результат измерений, из которого исключены систематические погрешности.

При проведении измерений целью является оценка истинного значения измеряемой величины, которое до опыта неизвестно. Результат измерения включает в себя помимо истинного значения еще и случайную погрешность, следовательно, сам является случайной величиной. В этих условиях фактическое значение случайной погрешности, полученное при поверке, еще не характеризует точности измерений, поэтому не ясно, какое же значение принять за окончательный результат измерения и как охарактеризовать его точность.

Ответ на эти вопросы можно получить, используя при метрологической обработке результатов измерения методы математической статистики, имеющей дело именно со случайными величинами.

КРАТКИЕ СВЕДЕНИЯ ИЗ ТЕОРИИ ВЕРОЯТНОСТИ.

Следует считать, что если событие может произойти, то оно обязательно произойдет. Все решает только вопрос времени. Возможность происхождения события в данный момент характеризуется вероятностью происхождения события – р. Если, например, событие А может происходить независимо от всех других событий – оно называется независимым, обозначается р(А) и не может превышать 1.

Вероятность осуществления события А называется в этом случае безусловной вероятностью.

Вероятность того, что событие А не произойдет, обозначается р( ).

р( )=1-р(А).

Если событие А не может произойти вне зависимости от события В, то оно называется зависимым.

Вероятность осуществления события А при условии, что произошло событие В, обозначается р(A/B) и называется условной вероятностью события А.

Если события А и В независимы друг от друга, то имеет место математическая запись:

Степень зависимости событий оценивается коэффициентами регрессии и корреляции.

Коэффициент регрессии события А относительно события В записывается как:

r(А,В)=р(А/В)-р(А/ )

Коэффициент регрессии события В относительно события А записывается как:

r(В,А)=р(В/А)-р(В/ ).

Коэффициент корреляции (совпадений) событий А и В выражается формулой:

К(А,В)=

В том случае, если результаты опыта сводятся к схеме случая и общее число случаев (опытов) равно N, то вероятность события А выражается как:

р(А)=NA/N,

где NA-число случаев благоприятных событию А (или число случаев, при которых событие А произошло).

Для достоверной оценки вероятности проявления события необходимо провести ряд опытов, количество которых определяет степень достоверности результата. В метрологии принято считать, что если произведено 30 или более опытов, то ряд называется репрезентативным или представительным. Если опытов было меньшее количество, то ряд называют нерепрезентативным (не представительным).

Описание случайных погрешностей с помощью функций распределения

Рассмотрим результат наблюдений Х за постоянной физической величиной Q как случайную величину, принимающую различные значения Z, в различных наблюдениях за ней. Значения будем называть результатами отдельных наблюдений.

Наиболее универсальный способ описания случайных величин заключается в отыскании их интегральных или дифференциальных функций распределения.

Под интегральной функцией распределения результатов наблюдений понимается зависимость вероятности того, что результат наблюдения в i-м опыте окажется меньшим некоторого текущего значения х, от самой величины х:

(3.4)

Здесь и в дальнейшем большие буквы используются для обозначения случайных величин, а маленькие - значений, принимаемых случайными величинами. Поскольку функция распределения вероятности представляет собой вероятность, то она удовлетворяет следующим свойствам:

На рисунке 3.1 показаны примеры функций распределения вероятности.

Рис. 3.1.

Более наглядным является описание свойств результатов наблюдений и случайных погрешностей с помощью дифференциальной функции распределения, иначе называемой плотностью распределения вероятностей:

(3.5)

Физический смысл f(x) состоит в том, что произведение f(x)dx представляет вероятность попадания случайной величины Х в интервал от х до х + x , т.е.

Свойства плотности распределения вероятности:

-вероятность достоверного события равна 1;иными словами, площадь, заключенная между кривой дифференциальной функции распределения и осью абсцисс, равна единице;

- вероятность попадания случайной величины в интервал от до .

От дифференциальной функции распределения легко перейти к интегральной путем интегрирования:

(3.6)

Размерность плотности распределения вероятностей, как это следует из формулы, обратна размерности измеряемой величины, поскольку сама вероятность - величина безразмерная.

Используя понятия функций распределения, легко получить выражения для вероятностей того, что результат наблюдений Х или случайная погрешность примет при проведении измерения некоторое значение в интервале или .

В терминах интегральной функции распределения имеем:

т.е. вероятность попадания результата наблюдений или случайной погрешности в заданный интервал равна разности значений функции распределения на границах этого интервала.

Заменяя в полученных формулах интегральные функции распределения на соответствующие плотности распределения вероятностей согласно выражению, получим формулы для искомой вероятности в терминах дифференциальной функции распределения:

Таким образом, вероятность попадания результата наблюдения или случайной погрешности в заданный полуоткрытый интервал равна площади, ограниченной кривой распределения, осью абсцисс и перпендикулярами к ней на границах этого интервала. Необходимо отметить, что результаты наблюдений в значительной степени сконцентрированы вокруг истинного значения измеряемой величины и по мере приближения к нему элементы вероятности их появления возрастают. Это дает основание принять за оценку истинного значения измеряемой величины координату центра тяжести фигуры, образованной осью абсцисс и кривой распределения, и называемую математическим ожиданием результатов наблюдений:

(3.7)

В заключение можно дать более строгое определение постоянной систематической и случайной погрешностей.

Систематической постоянной погрешностью называется отклонение математического ожидания результатов наблюдений от истинного значения измеряемой величины:

(3.8)

а случайной погрешностью - разность между результатом единичного наблюдения и математическим ожиданием результатов

(3.9)

В этих обозначениях истинное значение измеряемой величины составляет

(3.10)