ОСНОВНЫЕ ТЕРМИНЫ И ОПРЕДЕЛЕНИЯ

Понятия и определения, используемые в курсе, регламентированы ГОСТ 16263-70

Измерение – информационный процесс получения опытным путем численного соотношения между данной физической величиной и некоторым ее значением, принятым за единицу измерения.

Результат измерения – именованное число, найденное путем измерения физической величины. (Результат измерения может быть принят за действительное значение измеряемой величины).

Погрешность измерения – отклонение результата измерения от истинного значения измеряемой величины. (Погрешность измерения характеризует точность измерения).

Точность измерения – степень близости результата измерения к истинному значению измеряемой величины.

Измерительный эксперимент – научно обоснованный опыт для получения количественной информации с требуемой или возможной точностью определения результата измерений.

Средство измерений – техническое устройство, используемое в  измерительном эксперименте и имеющее нормированные характеристики точности.

Метрология – учение о мерах, наука о методах и средствах обеспечения единства измерений и способах достижения требуемой точности.

Законодательная метрология – раздел метрологии, включающий комплексы взаимосвязанных и взаимообусловленных правил, требований и норм, а также другие вопросы, нуждающиеся в регламентации со стороны государства, направленные на обеспечение единства измерений и единообразия средств измерения.

Контроль – процесс установления соответствия между состоянием объекта контроля или его свойством и заданной нормой.

Мера – средство измерений, предназначенное для воспроизведения физической величины заданного размера.

Измерительный прибор – средство измерений, предназначенное для выработки сигнала измерительной информации в форме, доступной для непосредственного восприятия наблюдателем.

Измерительный преобразователь – средство измерений, предназначенное для выработки сигнала измерительной информации в форме удобной для передачи, дальнейшего преобразования, обработки и хранения, но не поддающегося непосредственному восприятию наблюдателем.

Измерительная информационная система – совокупность средств измерений (мер, измерительных приборов, измерительных преобразователей и пр.) и вспомогательных устройств, соединенных между собой каналами связи и предназначенных для получения измерительной информации доступной для наблюдения, обработки и управления объектами.

1 Погрешности измерений.

Основные понятия и определения

При анализе значений, полученных при измерениях, следует  разграничивать два понятия: истинные значения физических величин и их опытные проявления - результаты измерений.

Истинные значения физических величин - значения, идеальным образом отражающие свойства данного объекта, как в количественном, так и в качественном отношении. Они не зависят от средств нашего познания и являются абсолютной истиной.

Результаты измерений, - представляют собой приближенные оценки значений величин, найденные путем измерения, они зависят не только от них, но еще и от метода измерения, от технических средств, с помощью которых проводятся измерения, и от восприятия наблюдателя, осуществляющего измерения.

Разница  между результатами измерения X' и истинным значением А измеряемой величины называется погрешностью измерения.

Но поскольку истинное значение А измеряемой величины неизвестно, то неизвестны и погрешности измерения, поэтому для получения хотя бы приближенных сведений о них приходится в формулу (1) вместо истинного значения подставлять так называемое действительное значение.

Действительным значением физической величины - называется ее значение, найденное экспериментально и настолько приближающееся к истинному, что для данной цели оно может быть использовано вместо него.

В качестве причин возникновения погрешностей являются: несовершенство методов измерений, технических средств, применяемых при измерениях, и органов чувств наблюдателя. В отдельную группу следует объединить причины, связанные с влиянием условий проведения измерений.

Описанные причины возникновения погрешностей определяются совокупностью большого числа факторов, под влиянием которых складывается суммарная погрешность измерения - см. формулу (1). Их можно объединить в две основные группы.

1. Факторы, постоянные или закономерно изменяющиеся в процессе измерительного эксперимента, например плавные изменения влияющих величин или погрешности применяемых при измерениях образцовых мер. Составляющие суммарной погрешности (1), определяемые действием факторов этой группы, называются систематическими погрешностями измерения. Их отличительная особенность в том, что они остаются постоянными или закономерно изменяются при повторных измерениях одной и той же величины. До тех пор, пока систематические погрешности больше случайных, их зачастую можно вычислить или исключить из результатов измерений надлежащей постановкой опыта.

2. Факторы, проявляющиеся весьма нерегулярно и столь же неожиданно исчезающие или проявляющиеся с интенсивностью, которую трудно предвидеть. К ним относятся, например, перекосы элементов приборов в их направляющих, нерегулярные изменения моментов трения в опорах, малые флюктуации влияющих величин, изменения внимания операторов и др.

Доля, или составляющая, суммарной погрешности измерения (1), определяемая действием факторов этой группы, называется случайной погрешностью измерения. Ее основная особенность в том, что она случайно изменяется при повторных измерениях одной и той же величины.

При создании измерительной аппаратуры и организации процесса измерения в целом интенсивность проявления большинства факторов данной группы удается свести к общему уровню, так что все они влияют более или менее одинаково на формирование случайной погрешности. Однако некоторые из них, например внезапное падение напряжения в сети электропитания, могут проявиться неожиданно сильно, в результате чего погрешность примет размеры, явно выходящие за границы, обусловленные ходом эксперимента в целом. Такие погрешности в составе случайной погрешности называются грубыми. К ним тесно примыкают промахи - погрешности, зависящие от наблюдателя и связанные с неправильным обращением со средствами измерений, неверным отсчетом показаний или ошибками при записи результатов.

Таким образом, мы имеем два типа погрешностей измерения:

В процессе измерения оба вида погрешностей проявляются одновременно, и погрешность измерения можно представить в виде суммы:

(2.1)

где o- случайная, а - систематическая погрешности.

Для получения результатов, минимально отличающихся от истинных значений величин, проводят многократные наблюдения за измеряемой величиной с последующей математической обработкой опытных данных. Поэтому наибольшее значение имеет изучение погрешности как функции номера наблюдения, т. е. времени (t). Тогда отдельные значения погрешностей можно будет трактовать как набор значений этой функции:

(2.2)

В общем случае погрешность является случайной функцией времени, которая отличается от классических функций математического анализа тем, что нельзя сказать, какое значение она примет в момент времени t. Можно указать лишь вероятности появления ее значений в том или ином интервале.

Погрешность измерений, соответствующая каждому моменту времени , называется сечением случайной функции . В каждом сечении в большинстве случаев можно найти среднее значение погрешности , относительно которого группируются погрешности в различных реализациях. Если через полученные таким образом точки провести плавную кривую, то она будет характеризовать общую тенденцию изменения погрешности во времени. Нетрудно заметить, что средние значения определяются действием факторов второй группы и представляют собой систематическую погрешность измерения в момент времени , а отклонения от среднего в сечении, соответствующие -й реализации, дают нам значения случайной погрешности. Последние являются уже представителями случайных величин - объектов изучения классической теории вероятностей.

Предположим, что (ti)=0, т.е. систематические погрешности тем или иным способом исключены из результатов наблюдений, и будем рассматривать только случайные погрешности, средние значения которых равны нулю в каждом сечении. Предположим далее, что случайные погрешности в различных сечениях не зависят друг от друга, т.е. знание случайной погрешности в одном сечении как ординаты одной реализации не дает нам никакой дополнительной информации о значении, принимаемом этой реализацией в любом другом сечении. Тогда случайную погрешность можно рассматривать как случайную величину, а ее значения при каждом из многократных наблюдений одной и той же физической величины - как ее эмпирические проявления, т.е. как результаты независимых наблюдений над ней.

В этих условиях случайная погрешность измерений o определяется как разность между исправленным результатом Х измерения и истинным значением А измеряемой величины:

(2.3)

причем исправленным будем называть результат измерений, из которого исключены систематические погрешности.

При проведении измерений целью является оценка истинного значения измеряемой величины, которое до опыта неизвестно. Результат измерения включает в себя помимо истинного значения еще и случайную погрешность, следовательно, сам является случайной величиной. В этих условиях фактическое значение случайной погрешности, полученное при поверке, еще не характеризует точности измерений, поэтому не ясно, какое же значение принять за окончательный результат измерения и как охарактеризовать его точность.

Ответ на эти вопросы можно получить, используя при метрологической обработке результатов измерения методы математической статистики, имеющей дело именно со случайными величинами.

Погрешности измерений.

Основные виды.

При анализе значений, полученных при измерениях, следует  разграничивать два понятия: истинные значения физических величин и их опытные проявления - результаты измерений.

Истинные значения физических величин - значения, идеальным образом отражающие свойства данного объекта, как в количественном, так и в качественном отношении. Они не зависят от средств нашего познания и являются абсолютной истиной.

Результаты измерений, - представляют собой приближенные оценки значений величин, найденные путем измерения, они зависят не только от них, но еще и от метода измерения, от технических средств, с помощью которых проводятся измерения, и от восприятия наблюдателя, осуществляющего измерения.

Разница между результатами измерения X' и истинным значением А измеряемой величины называется абсолютной погрешностью измерения:

(2.4)

Абсолютная погрешность, взятая с обратным знаком, называется поправкой измерительного прибора.

Относительная погрешность измерений: - отношение абсолютной погрешности к истинной величине. Определяется, как правило, в %.

(2.5)

Приведенная погрешность  измерения: - отношение абсолютной погрешности к некоторому нормированному значению Хn

(2.6)

Основная погрешность измерительного прибора: - погрешность, возникаюшяя при нормальном использовании прибора. Её можно представить в виде суммы погрешностей - аддитивной и мультипликативной.

=a+b*X,

(2.7)

где а – аддитивная погрешность;

      b – мультипликативная погрешность;

Х – текущее значение измерений.

Аддитивная погрешность – не зависит от чувствительности прибора и является постоянной для всего диапазона измерений.

Мультипликативная погрешность – зависит от чувствительности прибора и изменяется прпорционально текущему значению входной величины.

Интерпритация сказанного приведена на рисунке 2.1.

рис. 2.1.

Но поскольку истинное значение А измеряемой величины неизвестно, то неизвестны и погрешности измерения, поэтому для получения хотя бы приближенных сведений о них приходится в формулу (1) вместо истинного значения подставлять так называемое действительное значение.

Действительным значением физической величины - называется ее значение, найденное экспериментально и настолько приближающееся к истинному, что для данной цели оно может быть использовано вместо него.

В качестве причин возникновения погрешностей являются: несовершенство методов измерений, технических средств, применяемых при измерениях, и органов чувств наблюдателя. В отдельную группу следует объединить причины, связанные с влиянием условий проведения измерений.

У измерительных приборов, как правило, нормируется основная приведенная погрешность во всем диапазоне измерений, которая называется классом точности прибора. В соответствии с ГОСТ 8.401-80 классы точности выбирают из ряда: 1*10n ; 1.5*10n ; 2*10n ; 2.5*10n ; 4*10n ; 5*10n ; 6*10n, где n=1, 0, -1,  -2, -3, ... .

У цифровых измерительных приборов погрешность определяется из выражения:

,   (2.8)

где Хк – конечное значение диапазона измерения,

Х – текущее значение измеряемой величины,

c и d – составляющие погрешности, приведенные на шкале или в паспорте цифрового прибора.